Skip to main content

Advertisement

Log in

Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Water electrolysis is a sustainable approach for hydrogen production by using electricity from clean energy sources. However, both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) associated with water electrolysis are kinetically sluggish, leading to low efficiency in corresponding electrolysis devices. In addition, current electrocatalysts that can catalyze both HER and OER to practical rates require noble metals such as platinum that are low in abundance and high in price, severely limiting commercialization. As a result, the development of high-performance and cost-effective non-noble metal electrocatalysts to replace noble ones has intensified. Based on this, this review will comprehensively present recent research in the design, synthesis, characterization and performance validation/optimization of non-noble metal HER electrocatalysts and analyze corresponding catalytic mechanisms. Moreover, several important types of non-noble metal electrocatalysts including zero-dimensional, one-dimensional, two-dimensional and three-dimensional materials are presented with an emphasis on morphology/structure, synergetic interaction between metal and support, catalytic property and HER activity/stability. Furthermore, existing technical challenges are summarized and corresponding research directions are proposed toward practical application.

Graphic Abstract

Water electrolysis is a sustainable approach for hydrogen production by using electricity from clean energy sources. However, both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are kinetically sluggish, causing low efficiency of the electrolysis devices. The currently used noble metals, such as Pt-based electrocatalysts for catalyzing both HER and OER to practical rates, have low abundances and high price, limiting their commercialization. In this regard, developing high-performance and cost-effective non-noble metal electrocatalysts to replace noble ones has become a hot research topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reprinted with permission from Ref. [138]. Copyright © 2020, Elsevier BV

Fig. 4
Fig. 5

Reprinted with permission from Ref. [43]. Copyright © 2020, John Wiley and Sons Ltd

Fig. 6

Reprinted with permission from Ref. [49]. Copyright © 2020, American Chemical Society

Fig. 7

Reprinted with permission from Ref. [54]. Copyright © 2020, Wiley-Blackwell

Fig. 8

Reprinted with permission from Ref. [56]. Copyright © 2020, John Wiley & Sons Ltd.

Fig. 9

Reprinted with permission from Ref. [66]. Copyright © 2020, Royal Society of Chemistry

Fig. 10

Reprinted with permission from Ref. [72]. Copyright © 2020, John Wiley & Sons Ltd. 

Fig. 11

Reprinted with permission from Ref. [82]. Copyright © 2020, Royal Society of Chemistry

Fig. 12

Reprinted with permission from Ref. [94]. Copyright © 2020, Wiley–VCH Verlag

Fig. 13

Reprinted with permission from Ref. [101]. Copyright © 2020, Royal Society of Chemistry

Fig. 14

Reprinted with permission from Ref. [110]. Copyright © 2020, Royal Society of Chemistry

Fig. 15

Reprinted with permission from Ref. [114]. Copyright © 2020, American Chemical Society

Fig. 16

Reprinted with permission from Ref. [19]. Copyright © 2020, American Chemical Society

Fig. 17

Reprinted with permission from Ref. [132]. Copyright © 2020, Royal Society of Chemistry

Similar content being viewed by others

References

  1. Seh, Z.W., Kibsgaard, J., Dickens, C.F., et al.: Combining theory and experiment in electrocatalysis: insights into materials design. Science (2017). https://doi.org/10.1126/science.aad4998

    Article  PubMed  Google Scholar 

  2. Wang, J., Yan, M., Zhao, K., et al.: Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Adv. Mater. 29, 7–12 (2017). https://doi.org/10.1002/adma.201604464

    Article  CAS  Google Scholar 

  3. Tan, C.L., Cao, X.H., Wu, X.J., et al.: Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558

    Article  CAS  PubMed  Google Scholar 

  4. Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004). https://doi.org/10.1021/cr020730k

    Article  CAS  PubMed  Google Scholar 

  5. Zou, X.X., Zhang, Y.: Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e

    Article  CAS  PubMed  Google Scholar 

  6. Balat, M.: Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrog. Energy 33, 4013–4029 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.047

    Article  CAS  Google Scholar 

  7. Xia, W.Y., Li, N., Li, Q.Y., et al.: Au–NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction. Sci. Rep. 6, 1–9 (2016). https://doi.org/10.1038/srep23398

    Article  CAS  Google Scholar 

  8. Rostrup-Nielsen, J.R.: Fuels and energy for the future: the role of catalysis. Catal. Rev. 46, 247–270 (2004). https://doi.org/10.1081/cr-200036716

    Article  CAS  Google Scholar 

  9. Ran, J.R., Zhang, J., Yu, J.G., et al.: Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014). https://doi.org/10.1039/c3cs60425j

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, W., Lai, W.Z., Cao, R.: Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 117, 3717–3797 (2017). https://doi.org/10.1021/acs.chemrev.6b00299

    Article  CAS  PubMed  Google Scholar 

  11. Zhu, W.X., Yue, Z.H., Zhang, W.T., et al.: Wet-chemistry topotactic synthesis of bimetallic iron–nickel sulfide nanoarrays: an advanced and versatile catalyst for energy efficient overall water and urea electrolysis. J. Mater. Chem. A 6, 4346–4353 (2018). https://doi.org/10.1039/c7ta10584c

    Article  CAS  Google Scholar 

  12. Khan, M.A., Zhao, H.B., Zou, W.W., et al.: Recent progresses in electrocatalysts for water electrolysis. Electrochem. Energy Rev. 1, 483–530 (2018). https://doi.org/10.1007/s41918-018-0014-z

    Article  CAS  Google Scholar 

  13. Yuan, X.Y., Wang, J.Y.: Development of a new type Ni-S evolution hydrogen electrode for water electrolysis. Electrochem. 3, 447–451 (1997). https://doi.org/10.13208/j.electrochem.1997.04.017

  14. Popczun, E.J., Read, C.G., Roske, C.W., et al.: Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53, 5427–5430 (2014). https://doi.org/10.1002/anie.201402646

    Article  CAS  Google Scholar 

  15. Lin, J., Wang, A.Q., Qiao, B.T., et al.: Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135, 15314–15317 (2013). https://doi.org/10.1021/ja408574m

    Article  CAS  PubMed  Google Scholar 

  16. Wang, X.Y., Gan, X., Hu, T., et al.: Noble-metal-free hybrid membranes for highly efficient hydrogen evolution. Adv. Mater. 29, 1603617 (2017). https://doi.org/10.1002/adma.201603617

    Article  CAS  Google Scholar 

  17. Lu, J.J., Yin, S.B., Shen, P.K.: Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem. Energy Rev. 2, 105–127 (2019). https://doi.org/10.1007/s41918-018-0025-9

    Article  CAS  Google Scholar 

  18. Ali, A., Shen, P.K.: Recent progress in graphene-based nanostructured electrocatalysts for overall water splitting. Electrochem. Energy Rev. 3, 370–394 (2020). https://doi.org/10.1007/s41918-020-00066-3

    Article  CAS  Google Scholar 

  19. He, M.X., Feng, C.Q., Liao, T., et al.: Low-cost Ni2P/Ni0.96S heterostructured bifunctional electrocatalyst toward highly efficient overall urea-water electrolysis. ACS Appl. Mater. Inter. 12, 2225–2233 (2020). https://doi.org/10.1021/acsami.9b14350

  20. Huang, Z.P., Wang, C.F., Pan, L., et al.: Enhanced photoelectrochemical hydrogen production using silicon nanowires@MoS3. Nano Energy 2, 1337–1346 (2013). https://doi.org/10.1016/j.nanoen.2013.06.016

    Article  CAS  Google Scholar 

  21. Morales-Guio, C.G., Stern, L.A., Hu, X.L.: Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555–6569 (2014). https://doi.org/10.1039/c3cs60468c

    Article  CAS  PubMed  Google Scholar 

  22. Faber, M.S., Jin, S.: Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519–3542 (2014). https://doi.org/10.1039/c4ee01760a

    Article  CAS  Google Scholar 

  23. Li, Y., Chen, J.X., Cai, P.W., et al.: An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation. J. Mater. Chem. A 6, 4948–4954 (2018). https://doi.org/10.1039/c7ta10374c

    Article  CAS  Google Scholar 

  24. Oener, S.Z., Ardo, S., Boettcher, S.W.: Ionic processes in water electrolysis: the role of ion-selective membranes. ACS Energy Lett. 2, 2625–2634 (2017). https://doi.org/10.1021/acsenergylett.7b00764

    Article  CAS  Google Scholar 

  25. Zhang, J., Wang, G., Liao, Z.Q., et al.: Iridium nanoparticles anchored on 3D graphite foam as a bifunctional electrocatalyst for excellent overall water splitting in acidic solution. Nano Energy 40, 27–33 (2017). https://doi.org/10.1016/j.nanoen.2017.07.054

    Article  CAS  Google Scholar 

  26. Jiang, N., You, B., Sheng, M.L., et al.: Electrodeposited cobalt–phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem. Int. Ed. 54, 6251–6254 (2015). https://doi.org/10.1002/anie.201501616

    Article  CAS  Google Scholar 

  27. Zhou, W.J., Hou, D.M., Sang, Y.H., et al.: MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2, 11358 (2014). https://doi.org/10.1039/c4ta01898b

    Article  CAS  Google Scholar 

  28. Hu, S.N., Tan, Y., Feng, C.Q., et al.: Synthesis of N doped NiZnCu-layered double hydroxides with reduced graphene oxide on nickel foam as versatile electrocatalysts for hydrogen production in hybrid-water electrolysis. J. Power Sources 453, 227872 (2020). https://doi.org/10.1016/j.jpowsour.2020.227872

    Article  CAS  Google Scholar 

  29. Man, H.W., Tsang, C.S., Li, M.M.J., et al.: Transition metal-doped nickel phosphide nanoparticles as electro- and photocatalysts for hydrogen generation reactions. Appl. Catal. B Environ. 242, 186–193 (2019). https://doi.org/10.1016/j.apcatb.2018.09.103

    Article  CAS  Google Scholar 

  30. He, M.X., Hu, S.N., Feng, C.Q., et al.: Interlaced rosette-like MoS2/Ni3S2/NiFe-LDH grown on nickel foam: a bifunctional electrocatalyst for hydrogen production by urea-assisted electrolysis. Int. J. Hydrog. Energy 45, 23–35 (2020). https://doi.org/10.1016/j.ijhydene.2019

  31. Marković, N.M., Schmidt, T.J., Grgur, B.N., et al.: Effect of temperature on surface processes at the Pt(111)−liquid interface: hydrogen adsorption, oxide formation, and CO oxidation. J. Phys. Chem. B 103, 8568–8577 (1999). https://doi.org/10.1021/jp991826u

    Article  CAS  Google Scholar 

  32. Schmidt, T.J., Stamenkovic, V., Ross Jr., P.N., et al.: Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolyte. Phys. Chem. Chem. Phys. 5, 400–406 (2003). https://doi.org/10.1039/b208322a

    Article  CAS  Google Scholar 

  33. Zheng, Y., Jiao, Y., Vasileff, A., et al.: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 57, 7568–7579 (2018). https://doi.org/10.1002/anie.201710556

    Article  CAS  Google Scholar 

  34. Trasatti, S.: Work function, electronegativity, and electrochemical behaviour of metals. J. Electroanal. Chem. Interfacial Electrochem. 39, 163–184 (1972). https://doi.org/10.1016/s0022-0728(72)80485-6

    Article  CAS  Google Scholar 

  35. Zhu, J., Hu, L.S., Zhao, P.X., et al.: Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120, 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, L., Roling, L.T., Wang, X., et al.: Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015). https://doi.org/10.1126/science.aab0801

    Article  CAS  PubMed  Google Scholar 

  37. Joshi, U., Malkhandi, S., Ren, Y., et al.: Ruthenium–tungsten composite catalyst for the efficient and contamination-resistant electrochemical evolution of hydrogen. ACS Appl. Mater. Inter. 10, 6354–6360 (2018). https://doi.org/10.1021/acsami.7b17970

    Article  CAS  Google Scholar 

  38. Miles, M.H., Thomason, M.A.: Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltammetric studies. J. Electrochem. Soc. 123, 1459–1461 (1976). https://doi.org/10.1149/1.2132619

    Article  CAS  Google Scholar 

  39. Hu, S.N., Feng, C.Q., Wang, S.Q., et al.: Ni3N/NF as bifunctional catalysts for both hydrogen generation and urea decomposition. ACS Appl. Mater. Inter. 11, 13168–13175 (2019). https://doi.org/10.1021/acsami.8b19052

    Article  CAS  Google Scholar 

  40. Zhao, W.J., Wang, S.Q., Feng, C.Q., et al.: Novel cobalt-doped Ni0.85Se chalcogenides (CoxNi0.85−xSe) as high active and stable electrocatalysts for hydrogen evolution reaction in electrolysis water splitting. ACS Appl. Mater. Inter. 10, 40491–40499 (2018). https://doi.org/10.1021/acsami.8b12797

  41. Ito, Y., Cong, W.T., Fujita, T., et al.: High catalytic activity of nitrogen and sulfur Co-doped nanoporous graphene in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54, 2131–2136 (2015). https://doi.org/10.1002/anie.201410050

    Article  CAS  Google Scholar 

  42. Hu, C.G., Xiao, Y., Zou, Y.Q., et al.: Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection. Electrochem. Energy Rev. 1, 84–112 (2018). https://doi.org/10.1007/s41918-018-0003-2

    Article  CAS  Google Scholar 

  43. Sun, Y.Q., Zhang, T., Li, X.Y., et al.: Bifunctional hybrid Ni/Ni2P nanoparticles encapsulated by graphitic carbon supported with N, S modified 3D carbon framework for highly efficient overall water splitting. Adv. Mater. Interfaces 5, 1800473 (2018). https://doi.org/10.1002/admi.201800473

    Article  CAS  Google Scholar 

  44. Xiao, P., Sk, M.A., Thia, L., et al.: Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 7, 2624–2629 (2014). https://doi.org/10.1039/c4ee00957f

    Article  CAS  Google Scholar 

  45. Tian, J.Q., Liu, Q., Asiri, A.M., et al.: Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 136, 7587–7590 (2014). https://doi.org/10.1021/ja503372r

    Article  CAS  PubMed  Google Scholar 

  46. Kibsgaard, J., Tsai, C., Chan, K.R., et al.: Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 8, 3022–3029 (2015). https://doi.org/10.1039/c5ee02179k

    Article  CAS  Google Scholar 

  47. Tian, J.Q., Liu, Q., Cheng, N.Y., et al.: Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem. Int. Ed. 53, 9577–9581 (2014). https://doi.org/10.1002/anie.201403842

    Article  CAS  Google Scholar 

  48. Shi, Y.M., Zhang, B.: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45, 1529–1541 (2016). https://doi.org/10.1039/c5cs00434a

    Article  CAS  PubMed  Google Scholar 

  49. Zhuang, M.H., Ou, X.W., Dou, Y.B., et al.: Polymer-embedded fabrication of Co2P nanoparticles encapsulated in N, P-doped graphene for hydrogen generation. Nano Lett. 16, 4691–4698 (2016). https://doi.org/10.1021/acs.nanolett.6b02203

    Article  CAS  PubMed  Google Scholar 

  50. Merki, D., Vrubel, H., Rovelli, L., et al.: Fe Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 3, 2515 (2012). https://doi.org/10.1039/c2sc20539d

    Article  CAS  Google Scholar 

  51. Zhang, H., Ma, Z., Duan, J., et al.: Active sites implanted carbon cages in core-shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 10, 684–694 (2016). https://doi.org/10.1021/acsnano.5b05728

    Article  CAS  PubMed  Google Scholar 

  52. Liu, J., Liu, Y., Liu, N.Y., et al.: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015). https://doi.org/10.1126/science.aaa3145

    Article  CAS  PubMed  Google Scholar 

  53. Su, D.W., Ran, J., Zhuang, Z.W., et al.: Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. Sci. Adv. 6, eaaz8447 (2020). https://doi.org/10.1126/sciadv.aaz8447

  54. Li, W.D., Liu, Y., Wu, M., et al.: Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 30, 1800676 (2018). https://doi.org/10.1002/adma.201800676

    Article  CAS  Google Scholar 

  55. Hu, S., Wang, X.: Ultrathin nanostructures: smaller size with new phenomena. Chem. Soc. Rev. 42, 5577–5594 (2013). https://doi.org/10.1039/c3cs00006k

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Y., Li, X., Zhang, Q.H., et al.: A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem. 132, 1735–1743 (2020). https://doi.org/10.1002/ange.201913910

    Article  Google Scholar 

  57. Pu, Z.H., Amiinu, I.S., Kou, Z.K., et al.: RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem. Int. Ed. 56, 11559–11564 (2017). https://doi.org/10.1002/anie.201704911

    Article  CAS  Google Scholar 

  58. Kang, Z.H., Yang, Y.M., Liu, J.G., et al.: A nickel nanoparticle/carbon quantum dot hybrid as efficient electrocatalyst for hydrogen evolution under alkaline condition. J Mater. Chem. A 3, 18598–18604 (2015). https://doi.org/10.1039/C5TA04867B

    Article  CAS  Google Scholar 

  59. Zhang, L.J., Yang, Y.M., Ziaee, M.A., et al.: Nanohybrid of carbon quantum dots/molybdenum phosphide nanoparticle for efficient electrochemical hydrogen evolution in alkaline medium. ACS Appl. Mater. Inter. 10, 9460–9467 (2018). https://doi.org/10.1021/acsami.8b00211

    Article  CAS  Google Scholar 

  60. Kong, B., Tang, J., Zhang, Y.Y., et al.: Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nat. Chem. 8, 171–178 (2016). https://doi.org/10.1038/nchem.2405

    Article  CAS  PubMed  Google Scholar 

  61. Lu, S.Y., Xiao, G.J., Sui, L.Z., et al.: Piezochromic carbon dots with two-photon fluorescence. Angew. Chem. Int. Ed. 56, 6187–6191 (2017). https://doi.org/10.1002/anie.201700757

    Article  CAS  Google Scholar 

  62. Lu, Y.Z., Chen, W.: Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41, 3594–3623 (2012). https://doi.org/10.1039/c2cs15325d

    Article  CAS  PubMed  Google Scholar 

  63. Templeton, A.C., Wuelfing, W.P., Murray, R.W.: Monolayer-protected cluster molecules. Acc. Chem. Res. 33, 27–36 (2000). https://doi.org/10.1021/ar9602664

    Article  CAS  PubMed  Google Scholar 

  64. Mathew, A., Pradeep, T.: Noble metal clusters: applications in energy, environment, and biology. Part. Part. Syst. Charact. 31, 1017–1053 (2014). https://doi.org/10.1002/ppsc.201400033

    Article  CAS  Google Scholar 

  65. Zhang, L.L., Chang, Q.W., Chen, H.M., et al.: Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 29, 198–219 (2016). https://doi.org/10.1016/j.nanoen.2016.02.044

    Article  CAS  Google Scholar 

  66. Gao, X.H., Chen, W.: Highly stable and efficient Pd6(SR)12 cluster catalysts for the hydrogen and oxygen evolution reactions. Chem. Commun. 53, 9733–9736 (2017). https://doi.org/10.1039/c7cc04787h

    Article  CAS  Google Scholar 

  67. Park, H.S., Yang, J.C., Cho, M.K., et al.: RuO2 nanocluster as a 4-in-1 electrocatalyst for hydrogen and oxygen electrochemistry. Nano Energy 55, 49–58 (2019). https://doi.org/10.1016/j.nanoen.2018

  68. Maayan, G., Gluz, N., Christou, G.: A bioinspired soluble manganese cluster as a water oxidation electrocatalyst with low overpotential. Nat. Catal. 1, 48–54 (2018). https://doi.org/10.1038/s41929-017-0004-2

    Article  CAS  Google Scholar 

  69. Quaino, P., Santos, E., Wolfschmidt, H., et al.: Theory meets experiment: Electrocatalysis of hydrogen oxidation/evolution at Pd–Au nanostructures. Catal. Today 177, 55–63 (2011). https://doi.org/10.1016/j.cattod.2011.05.004

    Article  CAS  Google Scholar 

  70. Zhang, J.Q., Zhao, Y.F., Guo, X., et al.: Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1

    Article  CAS  Google Scholar 

  71. Guo, J.J., Huo, J.J., Liu, Y., et al.: Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application. Small Methods 3, 1900159 (2019). https://doi.org/10.1002/smtd.201900159

    Article  CAS  Google Scholar 

  72. Qiu, H.J., Ito, Y., Cong, W.T., et al.: Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54, 14031–14035 (2015). https://doi.org/10.1002/anie.201507381

    Article  CAS  Google Scholar 

  73. Wang, H.T., Feng, Q., Cheng, Y.C., et al.: Atomic bonding between metal and graphene. J. Phys. Chem. C 117, 4632–4638 (2013). https://doi.org/10.1021/jp311658m

    Article  CAS  Google Scholar 

  74. Xie, J.F., Zhang, H., Li, S., et al.: Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25, 5807–5813 (2013). https://doi.org/10.1002/adma.201302685

    Article  CAS  PubMed  Google Scholar 

  75. Li, Y.G., Wang, H.L., Xie, L.M., et al.: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011). https://doi.org/10.1021/ja201269b

    Article  CAS  PubMed  Google Scholar 

  76. Nørskov, J.K., Bligaard, T., Rossmeisl, J., et al.: Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). https://doi.org/10.1038/nchem.121

    Article  CAS  PubMed  Google Scholar 

  77. Mao, J.J., He, C.T., Pei, J.J., et al.: Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 9, 1–8 (2018). https://doi.org/10.1038/s41467-018-07288-6

    Article  CAS  Google Scholar 

  78. Zhao, Y.Q., Ling, T., Chen, S.M., et al.: Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58, 12252–12257 (2019). https://doi.org/10.1002/anie.201905554

    Article  CAS  Google Scholar 

  79. Yang, X.F., Wang, A.Q., Qiao, B.T., et al.: Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013). https://doi.org/10.1021/ar300361m

    Article  CAS  PubMed  Google Scholar 

  80. Seo, H.J., Jeong, W., Lee, S., et al.: Ultrathin silver telluride nanowire films and gold nanosheet electrodes for a flexible resistive switching device. Nanoscale 10, 5424–5430 (2018). https://doi.org/10.1039/c8nr01429a

    Article  CAS  PubMed  Google Scholar 

  81. Gao, L., Chen, L., Wei, H., et al.: Correction: Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates. Nanoscale 10, 14771 (2018). https://doi.org/10.1039/c8nr01827h

    Article  CAS  PubMed  Google Scholar 

  82. Sun, Y.Q., Hang, L.F., Shen, Q., et al.: Mo doped Ni2P nanowire arrays: An efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values. Nanoscale 9, 16674–16679 (2017). https://doi.org/10.1039/c7nr03515b

    Article  CAS  PubMed  Google Scholar 

  83. Feng, L.L., Yu, G.T., Wu, Y.Y., et al.: High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137, 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186

    Article  CAS  PubMed  Google Scholar 

  84. Tang, C., Cheng, N.Y., Pu, Z.H., et al.: NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 54, 9351–9355 (2015). https://doi.org/10.1002/anie.201503407

    Article  CAS  Google Scholar 

  85. Liu, J., Chen, B., Kou, Y., et al.: Pt-Decorated highly porous flower-like Ni particles with high mass activity for ammonia electro-oxidation. J. Mater. Chem. A 4, 11060–11068 (2016). https://doi.org/10.1039/c6ta02284g

    Article  CAS  Google Scholar 

  86. Zhou, H.Q., Wang, Y.M., He, R., et al.: One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: an efficient 3D electrode for hydrogen evolution reaction. Nano Energy 20, 29–36 (2016). https://doi.org/10.1016/j.nanoen.2015.12.008

    Article  CAS  Google Scholar 

  87. Wang, F.M., Li, Y.C., Shifa, T.A., et al.: Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angew. Chem. 128, 7033–7038 (2016). https://doi.org/10.1002/ange.201602802

    Article  Google Scholar 

  88. Hu, K.L., Wu, M.X., Hinokuma, S., et al.: Boosting electrochemical water splitting via ternary NiMoCo hybrid nanowire arrays. J. Mater. Chem. A 7, 2156–2164 (2019). https://doi.org/10.1039/c8ta11250a

    Article  CAS  Google Scholar 

  89. Cummins, D.R., Martinez, U., Sherehiy, A., et al.: Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nat. Commun. 7, 1–10 (2016). https://doi.org/10.1038/ncomms11857

    Article  CAS  Google Scholar 

  90. Chen, Z.B., Cummins, D., Reinecke, B.N., et al.: Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett. 11, 4168–4175 (2011). https://doi.org/10.1021/nl2020476

    Article  CAS  PubMed  Google Scholar 

  91. Yan, Y., He, T., Zhao, B., et al.: Metal/covalent–organic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A 6, 15905–15926 (2018). https://doi.org/10.1039/c8ta05985c

    Article  CAS  Google Scholar 

  92. Sun, M.H., Huang, S.Z., Chen, L.H., et al.: Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45, 3479–3563 (2016). https://doi.org/10.1039/c6cs00135a

    Article  CAS  PubMed  Google Scholar 

  93. Wang, H., Zhou, T.T., Li, P.L., et al.: Self-supported hierarchical nanostructured NiFe-LDH and Cu3P weaving mesh electrodes for efficient water splitting. ACS Sustain. Chem. Eng. 6, 380–388 (2018). https://doi.org/10.1021/acssuschemeng.7b02654

    Article  CAS  Google Scholar 

  94. Yao, M.Q., Hu, H.H., Sun, B.L., et al.: Self-supportive mesoporous Ni/Co/Fe phosphosulfide nanorods derived from novel hydrothermal electrodeposition as a highly efficient electrocatalyst for overall water splitting. Small 15, e1905201 (2019). https://doi.org/10.1002/smll.201905201

    Article  CAS  PubMed  Google Scholar 

  95. Li, W., Liu, J., Zhao, D.Y.: Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 1–17 (2016). https://doi.org/10.1038/natrevmats.2016.23

    Article  CAS  Google Scholar 

  96. Zhao, P., Wang, N., Yao, M.Q., et al.: Hydrothermal electrodeposition incorporated with CVD-polymerisation to tune PPy@MnO2 interlinked core-shell nanowires on carbon fabric for flexible solid-state asymmetric supercapacitors. Chem. Eng. J. 380, 122488 (2020). https://doi.org/10.1016/j.cej.2019.122488

    Article  CAS  Google Scholar 

  97. Zhao, Y.F., Wang, S.J., Liu, H., et al.: Porous Mo2C nanorods as an efficient catalyst for the hydrogen evolution reaction. J. Phys. Chem. Solids 132, 230–235 (2019). https://doi.org/10.1016/j.jpcs.2019.05.003

    Article  CAS  Google Scholar 

  98. Yang, Y.Y., Li, C.C., Ma, X.L., et al.: One-dimensional CoMoS4 nanorod arrays as an efficient electrocatalyst for hydrogen evolution reaction. J. Alloy. Compd. 821, 153245 (2020). https://doi.org/10.1016/j.jallcom.2019.153245

    Article  CAS  Google Scholar 

  99. Li, J., Wan, M., Li, T., et al.: NiCoSe2−x /N-doped C mushroom-like core/shell nanorods on N-doped carbon fiber for efficiently electrocatalyzed overall water splitting. Electrochim. Acta 272, 161–168 (2018). https://doi.org/10.1016/j.electacta.2018.04.032

    Article  CAS  Google Scholar 

  100. Tabassum, H., Guo, W.H., Meng, W., et al.: Hydrogen evolution: Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N Co-doped graphene nanotubes for all pH value electrochemical hydrogen evolutionAdv. Energy Mater. 7, 1601671 (2017). https://doi.org/10.1002/aenm.201770045

  101. Chhetri, M., Maitra, S., Chakraborty, H., et al.: Superior performance of borocarbonitrides, BxCyNz, as stable, low-cost metal-free electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 9, 95–101 (2016). https://doi.org/10.1039/c5ee02521d

    Article  CAS  Google Scholar 

  102. Wang, S.Y., Iyyamperumal, E., Roy, A., et al.: Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by Co-doping with boron and nitrogen. Angew. Chem. Int. Ed. 50, 11756–11760 (2011). https://doi.org/10.1002/anie.201105204

    Article  CAS  Google Scholar 

  103. Wu, Z.H., Wang, Z.Q., Geng, F.X.: Radially aligned hierarchical nickel/nickel–iron (oxy)hydroxide nanotubes for efficient electrocatalytic water splitting. ACS Appl. Mater. Interfaces 10, 8585–8593 (2018). https://doi.org/10.1021/acsami.7b16953

    Article  CAS  PubMed  Google Scholar 

  104. Lin, H.F., Li, H.Y., Li, Y.Y., et al.: Hierarchical CoS/MoS2 and Co3S4/MoS2/Ni2P nanotubes for efficient electrocatalytic hydrogen evolution in alkaline media. J. Mater. Chem. A 5, 25410–25419 (2017). https://doi.org/10.1039/c7ta08760h

    Article  CAS  Google Scholar 

  105. Cozzarini, L., Bertolini, G., Šuran-Brunelli, S.T., et al.: Metal decorated carbon nanotubes for electrocatalytic water splitting. Int. J. Hydrog. Energy 42, 18763–18773 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.101

    Article  CAS  Google Scholar 

  106. Xing, T., Zheng, Y., Li, L.H., et al.: Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene. ACS Nano 8, 6856–6862 (2014). https://doi.org/10.1021/nn501506p

    Article  CAS  PubMed  Google Scholar 

  107. Sun, Y.F., Sun, Z.H., Gao, S., et al.: Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat. Commun. 3, 10571–10577 (2012). https://doi.org/10.1038/ncomms2066

    Article  CAS  Google Scholar 

  108. Yu, X.X., Yu, Z.Y., Zhang, X.L., et al.: “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 141, 7537–7543 (2019). https://doi.org/10.1021/jacs.9b02527

    Article  CAS  PubMed  Google Scholar 

  109. Naguib, M., Kurtoglu, M., Presser, V., et al.: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306

    Article  CAS  PubMed  Google Scholar 

  110. Yoon, Y., Tiwari, A.P., Lee, M., et al.: Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution. J. Mater. Chem. A 6, 20869–20877 (2018). https://doi.org/10.1039/c8ta08197b

    Article  CAS  Google Scholar 

  111. Yoon, Y., Lee, K., Kwon, S., et al.: Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano 8, 4580–4590 (2014). https://doi.org/10.1021/nn500150j

    Article  CAS  PubMed  Google Scholar 

  112. Gao, X.C., Feng, J., Su, D.W., et al.: In-situ exfoliation of porous carbon nitride nanosheets for enhanced hydrogen evolution. Nano Energy 59, 598–609 (2019). https://doi.org/10.1016/j.nanoen.2019.03.016

    Article  CAS  Google Scholar 

  113. Wang Y.Y., Xie C., Liu D.D., et al.: Nanoparticles-stacked porous nickel-iron nitride nanosheet: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Inter., 8, 18652–18657 (2016). https://doi.org/10.1021/acsami.6b05811

  114. Luo, Y.T., Li, X., Cai, X.K., et al.: Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12, 4565–4573 (2018). https://doi.org/10.1021/acsnano.8b00942

    Article  CAS  PubMed  Google Scholar 

  115. Hu, J., Zhang, C.X., Jiang, L., et al.: Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 1, 383–393 (2017). https://doi.org/10.1016/j.joule.2017.07.011

    Article  CAS  Google Scholar 

  116. Xiong, P., Zhang, X.Y., Wan, H., et al.: Interface modulation of two-dimensional superlattices for efficient overall water splitting. Nano Lett. 19, 4518–4526 (2019). https://doi.org/10.1021/acs.nanolett.9b01329

    Article  CAS  PubMed  Google Scholar 

  117. Wu, W.J., Zhao, Y.F., Li, S.H., et al.: P doped MoS2 nanoplates embedded in nitrogen doped carbon nanofibers as an efficient catalyst for hydrogen evolution reaction. J. Colloid Inter. Sci. 547, 291–298 (2019). https://doi.org/10.1016/j.jcis.2019.04.004

    Article  CAS  Google Scholar 

  118. Hu, S.N., Wang, S.Q., Feng, C.Q., et al.: Novel MOF-derived nickel nitride as high-performance bifunctional electrocatalysts for hydrogen evolution and urea oxidation. ACS Sustain. Chem. Eng. 8, 7414–7422 (2020). https://doi.org/10.1021/acssuschemeng.0c01450

    Article  CAS  Google Scholar 

  119. Xie, Y., Naguib, M., Mochalin, V.N., et al.: Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136, 6385–6394 (2014). https://doi.org/10.1021/ja501520b

    Article  CAS  PubMed  Google Scholar 

  120. Liu, Y.Y., Wu, J.J., Hackenberg, K.P., et al.: Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2, 1–7 (2017). https://doi.org/10.1038/nenergy.2017.127

    Article  CAS  Google Scholar 

  121. Long, X., Wang, Z.L., Xiao, S., et al.: Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today 19, 213–226 (2016). https://doi.org/10.1016/j.mattod.2015

  122. Chang, Y.H., Lin, C.T., Chen, T.Y., et al.: Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 25, 756–760 (2013). https://doi.org/10.1002/adma.201202920

    Article  CAS  PubMed  Google Scholar 

  123. Dong, T., Zhang, X., Wang, P., et al.: Hierarchical nickel-cobalt phosphide hollow spheres embedded in P-doped reduced graphene oxide towards superior electrochemistry activity. Carbon 149, 222–233 (2019). https://doi.org/10.1016/j.carbon.2019.04.050

    Article  CAS  Google Scholar 

  124. Du, C., Yang, L., Yang, F.L., et al.: Nest-like NiCoP for highly efficient overall water splitting. ACS Catal. 7, 4131–4137 (2017). https://doi.org/10.1021/acscatal.7b00662

    Article  CAS  Google Scholar 

  125. Siwek, K.I., Eugénio, S., Santos, D.M.F., et al.: 3D nickel foams with controlled morphologies for hydrogen evolution reaction in highly alkaline media. Int. J. Hydrog. Energy 44, 1701–1709 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.070

    Article  CAS  Google Scholar 

  126. Tranca, D.C., Rodríguez-Hernández, F., Seifert, G., et al.: Theoretical models for hydrogen evolution reaction at combined Mo2C and N-doped graphene. J. Catal. 381, 234–247 (2020). https://doi.org/10.1016/j.jcat.2019

  127. Lu, C.B., Tranca, D., Zhang, J., et al.: Molybdenum carbide-embedded nitrogen-doped porous carbon nanosheets as electrocatalysts for water splitting in alkaline media. ACS Nano 11, 3933–3942 (2017). https://doi.org/10.1021/acsnano.7b00365

    Article  CAS  PubMed  Google Scholar 

  128. He, C.Y., Tao, J.Z.: Synthesis of nanostructured clean surface molybdenum carbides on graphene sheets as efficient and stable hydrogen evolution reaction catalysts. Chem. Commun. 51, 8323–8325 (2015). https://doi.org/10.1039/c5cc01240f

    Article  CAS  Google Scholar 

  129. Ding, B., Ong, W.J., Jiang, J.Z., et al.: Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M = Ti, Mo). Appl. Surf. Sci. 500, 143987 (2020). https://doi.org/10.1016/j.apsusc.2019.143987

    Article  CAS  Google Scholar 

  130. Abghoui, Y., Skúlason, E.: Hydrogen evolution reaction catalyzed by transition-metal nitrides. J. Phys. Chem. C 121, 24036–24045 (2017). https://doi.org/10.1021/acs.jpcc.7b06811

    Article  CAS  Google Scholar 

  131. Zhao, Y.X., Tang, M.T., Wu, S.D., et al.: Rational design of stable sulfur vacancies in molybdenum disulfide for hydrogen evolution. J. Catal. 382, 320–328 (2020). https://doi.org/10.1016/j.jcat.2019.12.028

    Article  CAS  Google Scholar 

  132. Ye, K., Li, Y.Y., Liao, R.Z.: DFT study of the mechanism of hydrogen evolution catalysed by molecular Ni, Co and Fe catalysts containing a diamine–tripyridine ligand. RSC Adv. 6, 90035–90045 (2016). https://doi.org/10.1039/c6ra20721a

    Article  CAS  Google Scholar 

  133. Liao, R.Z., Wang, M., Sun, L.C., et al.: The mechanism of hydrogen evolution in Cu(bztpen)-catalysed water reduction: a DFT study. Dalton Trans. 44, 9736–9739 (2015). https://doi.org/10.1039/c5dt01008j

    Article  CAS  PubMed  Google Scholar 

  134. Mondal, B., Sengupta, K., Rana, A., et al.: Cobalt corrole catalyst for efficient hydrogen evolution reaction from H2O under ambient conditions: Reactivity, spectroscopy, and density functional theory calculations. Inorg. Chem. 52, 3381–3387 (2013). https://doi.org/10.1021/ic4000473

    Article  CAS  PubMed  Google Scholar 

  135. Zang, W.: Investigation of molybdenum carbides as catalyst for hydrogen evolution in pH universal environment using density functional theory simulation. Metalurgija 59, 355–357 (2020). https://hrcak.srce.hr/237039

  136. Subbaraman, R., Tripkovic, D., Chang, K.C., et al.: Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012). https://doi.org/10.1038/nmat3313

    Article  CAS  PubMed  Google Scholar 

  137. Turner, J.A.: Sustainable hydrogen production. Science 305, 972–974 (2004). https://doi.org/10.1126/science.1103197

    Article  CAS  PubMed  Google Scholar 

  138. Fang, M., Gao, W., Dong, G.F., et al.: Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy 27, 247–254 (2016). https://doi.org/10.1016/j.nanoen.2016.07.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 21205030, 2198073 and NSFC −U1903217), the Key Project of Hubei Provincial Education Department (D20171001), the Key Laboratory of Regional Development and Environmental Response in Hubei Province (2019(0A)003) and the Hubei Key Laboratory for Processing and Application of Catalytic Materials (201829303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huimin Wu or David P. Wilkinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Feng, C., Zhang, L. et al. Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. Electrochem. Energ. Rev. 4, 473–507 (2021). https://doi.org/10.1007/s41918-020-00086-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-020-00086-z

Keywords

Navigation